產品詳情
機械動力(一般即為馬達風扇)驅使空氣流動,與水塔內冷卻水或熱交換器進行熱質傳遞,藉以降低冷卻水溫度。依風扇位置可分為抽風式及吹入式兩種,所謂吹入式是用風扇將空氣吹入殼體內側與殼內冷卻水進行熱質傳交換作業(yè),通常由殼的下方吹入,吸收水蒸氣之濕空氣則由上方吹出,如圖2所示為吹入式冷卻水塔之一例,此型依風扇之型式可分為離心式及軸流式,圖2所示即為離心式風扇,離心式者其特色為具有較高之風壓,可運用于較高阻抗設計之熱交換散熱填料。一般常見于蒸發(fā)型冷卻水塔。圖3所示為軸流吹入式冷卻水塔之一例,亦有用雙層風葉型者以增加軸流風扇之風壓。
吹入式冷卻水塔是透過風扇將外氣吹入塔內,因此塔內空氣為正壓(大于一大氣壓),密度亦較高于大氣壓力下之空氣密度,因此空氣之熱交換系數略高,這是吹入式冷卻水塔的優(yōu)點。通常吹入式冷卻水塔之塔的周邊氣密度(封閉度)要求較高,原因是避免塔內空氣無法完全由頂端吹出,造成空氣未能完全與冷卻水充分接觸進行熱質傳遞;其次吹入式受風扇葉片影響其空氣動能于入口端局部較大,局部風速亦會較高,而末端(出風口端)之出口空氣流分散,出風速度較為平穩(wěn),局部出風動力不若抽風式者高,因此相對而言出風回流的情形較多,此為吹入式冷卻水塔的缺點。
抽風式冷卻水塔通常于塔頂裝有一馬達驅動之軸流式風扇,由于屬抽氣式因此于其塔內之空氣為負壓(低于一大氣壓),塔內空氣密度較低,因此熱質傳系數亦會較低,這是抽風式的缺點。但由于其出口之風扇葉片局部帶動,出口空氣局部流速較高,吹出之局部風速亦較大,因此排出之濕空氣可吹離較遠,其回流量遠較吹入式冷卻水塔少,這是抽風式的優(yōu)點。然而因空氣密度較低(因為出口空氣溫度較高且含濕量較較大)之故,抽風式需求較大之風力驅動動能。